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ABSTRACT: 
 
The research is carried on dataset Vaihingen acquired from ISPRS Test Project on Urban Classification and 3D Building 
Reconstruction. Four different types of ground objects are extracted: buildings, trees, vegetation (grass and low bushes) and road. 
Spectral information is used to classify the images and then a refinement process is carried out using DSM. A novel method called 
Sparse Representation is introduced to extract ground objects from airborne images. For each pixel we extract its spectral vector and 
solve Basis Pursuit problem using l1 minimization. The classification of the pixel is same as the column vector of observation matrix 
corresponding to the largest positive component of the solution vector. A refinement procedure based on elevation histogram is 
carried on to improve the coarse classification due to misclassification of trees/vegetation and buildings/road. 
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1. INTRODUTION 

In recent years LiDAR (Light Detection And Ranging) has 
emerged as a new technology which provides valuable data in 
various forms and scales for mapping and monitoring land 
cover features. Its use has increased dramatically due to 
availability of high-density LiDAR data as well as high 
spatial/spectral resolution airborne imageries. However the data 
from these different sensors have their own characteristics. 
Spatial information which can be used to derive highly accurate 
DSM of scanned objects can be directly obtained from LiDAR 
data. On the other hand, high resolution airborne imageries 
offer very detailed spectral/textural information of ground 
objects. Although aerial photography has been used as a 
mapping tool for a century, the fusion of aerial photography and 
LiDAR data has only been possible in the past few years due to 
advances in sensor design and data acquisition/processing 
techniques (Baltsavias, 1999). So combining these two kinds of 
complementary datasets is quite promising for improving land 
cover mapping (Tao and Yasuoka, 2002).  
 
There have been some attempts to fuse LiDAR and high-
resolution imagery for land cover mapping and very promising 
results are shown in recent years. Haala and Brenner (1999) 
combined a LiDAR derived DSM with three-color-band aerial 
images to apply unsupervised classification based on the 
ISODATA (Iterative Self-Organizing Data Analysis Technique) 
algorithm to normalized Digital Surface Model (nDSM) and 
CIR image. In their experiment, nDSM was used to classify 
objects which had different distribution patterns in elevation 
direction. The low-resolution LiDAR data was greatly 
facilitated to separate trees from buildings by the near-infrared 
band from the aerial imagery. Schenk and Csatho (2002) 

exploited the complementary properties of LiDAR and aerial 
images to extract semantically meaningful information. 
Rottensteiner et al. (2005) used a LiDAR derived DTM and the 
Normalised Difference Vegetation Index (NDVI) from 
multispectal images to detect buildings in densely built-up 
urban areas. The rule-based classification scheme applied 
Dempster-Shafer theory to delineate building regions, 
combining NDVI and the average relative heights to separate 
buildings from other objects. Ali et al. (2005) applied an 
automated object-level technique based on hierarchical decision 
tree to fuse high-resolution imagery and LiDAR data. Sohn and 
Dowman (2007) presented an approach for automatic extraction 
of building footprints in a combination of multispectral imagery 
and airborne laser scanning data. The presented method utilized 
a divide-merge scheme to obtain the recognized building outline. 
A comparison of pixel- and object-level data fusion and 
subsequent classification of LiDAR and high-resolution 
imagery was carried out by Ali et al. (2009). The results showed 
that fusion of the color imagery and the DSM generally 
exhibited better results than sole classification of color imagery.  
 
The underlying assumption of fusion of multisource data is that 
classification accuracy should be improved due to more 
incorporated features (Tso and Mather, 2001). Image fusion can 
be performed at pixel-, object or feature- and decision-levels 
(Pohl and van-Genderen, 1998; Schistad-Solberg et al., 1994). 
Pixel level fusion focused on the merging of physical 
parameters derived from multisource data. It is very sensitive to 
geo-referencing and pixel spacing and topological information 
is often not used in the fusion and subsequent procedures. 
Object-level image fusion methods usually segment multisource 
data into meaningful objects which consists of many data units.
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This kind of fusion techniques are often based on the spectra 
and spatial characteristics derived from datasets and the 
segmented objects are combined for further object recognition 
using fuzzy clustering, hierarchical decision tree and other 
pattern recognition algorithms (Geneletti and Gorte, 2003). 
 
Nowadays LiDAR data are often derived from one or multi 
returns of laser pulses and the digital imageries usually contain 
multispectral bands. With the availability of full-waveform 
LiDAR data and hyperspectral imageries, the problems of data 
fusion and pattern classification become more complicated. 
Opportunities are that high classification accuracy should be 
achieved due to more spectral and spatial features. But there are 
still challenges in data processing, waveform modeling and 
measurements interpretation of full-waveform LiDAR (Wagner 
et al., 2004).  
 
 

2. METHODOLOGY 

The workflow and software we use are illustrated in Figure 1. 
The main tasks are described in the following subsections with 
emphasis on method for ground object extraction. 
 
2.1 Data Preparation 

Orientation and registration procedures should be carried out 
first to guarantee that multisource data are operated under the 
same spatial framework (Habib, et al., 2006). The provied DSM 
file with resolution of 25cm is used as reference to orthrectify 
and mosaic image using given orientation parameters and the 
task is completed using Leica Photogrammetry Suite.  
 
We combine mosaic image with DSM data and extract Area of 
interest (AOI) using ERDAS IMAGINE. Area1, Area2 and 
Area3 are extracted as required and image of each test area has 
four ‘bands’ (namely IR-R-G-H). All the airborne images are 
contrast-enhanced before classification. 
 
2.2 Ground Object Extraction 

Buildings, trees and vegetation (natural ground covered by 
vegetation) are extracted in Area1, Area2 and Area3. Before the 
extraction, we enhance the contrast of image to improve 
distinctiveness of different ground objects (Figure 2a). The 
ground object extraction procedure consists of two steps: coarse 
classification and refinement. Firstly we use spectral 
information to coarsely classify the images. Then a refinement 
process is carried out using elevation information. The method 
we use to extract ground objects is Sparse Representation. The 
seminal works to refer are (Chen, Donoho, and Saunders 1999; 
Candès and Tao 2005; Donoho 2006 a,b; Bruckstein, Donoho 
and Elad 2009; Wright, Yang, Ganesh, Sastry and Ma 2009). 
The key idea is to represent the spectral vector (vector of IR-R-
G value) of a pixel using spectral vectors of pixels of typical 
ground objects. The problem of classification is formulated as a 
Basis Pursuit problem and then solved using convex 
programming (Equation 1) methods in MATLAB. 
 
 

                               1
min , . .x s t y Ax=                  (1) 

 
 

where y is the spectral vector of a pixel and column vectors of 
observation matrix A are spectral vectors of pixels of typical 
ground objects. These pixels are interactively selected on the 
images of test areas. In our implementation, we select five 
pixels for each typical ground objects (that is trees/vegetation, 
buildings and road). Then a test procedure is carried out to 
examine the distinctiveness of spectral vectors we select as 
observations and vectors which lead to misclassification are 
updated. Lastly, each pixel of images from test areas is 
classified using given observation matrix A. The procedure 
works as follows: for each pixel we extract its spectral vector as 
y in Equation 1; then we solve Equation 1 using l1 
minimization solver; the classification of the pixel is same as 
the column vector of A corresponding to the largest positive 
component of the solution vector x (Figure 2b, 4b, 6b). 
Therefore the methodology we use is under framework of 
Supervised Classification. And it is in essence a pixel-oriented 
classification method.  
 
Often we have to refine the coarse classification due to 
misclassification of trees/vegetation and buildings/road. 
Refinement is mainly based on elevation histogram. We select 
values that separate trees/vegetation and buildings/road as 
thresholds to refine coarse classification results. 
 
The outputs of “Ground Object Extraction” have to be 
georeferenced due to loss of geoinformation when processing in 
MATLAB. The classified objects are separately output to files 
and georeference information is added using ERDAS 
IMAGINE. 
 

 
Figure 1: Workflow and the software tools 

 
 

3. RESULTS 

The whole research area is illustrated in Figure 2. Three test 
areas for buildings/trees/vegetation extraction are outlined in 
yellow. Test Area 1 consists of house with complex roof 
structures. The ground objects in Area 2 are mainly trees and 
buildings. Area 3 The classification results are separately shown 
in Figure 3a-3c, 4a-4c, 5a-5c). The extracted objects are color-
coded as: vegetation (green), trees (yellow), road (blue) and 
buildings (red). 
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Figure 2: The Vaihingen test areas overlaid to images 10050105 

and 10050107 
 
 

 
Figure 3a 

 
 

   
                  Figure 3b                                  Figure 3c 

Figure 3: Classification result (3b, 3c) of Area1 (3a) 
 

 
      Figure 4a 

 
 

   
Figure 4b                                    Figure 4c 

Figure 4: Classification result (4b, 4c) of Area2 (4a) 

 
 

 
Figure 5a 
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Figure 5b                                     Figure 5c 

Figure 4: Classification results (5b, 5c) of Area3 (5a) 
 
 

4. CONCLUSIONS AND FUTURE WORK 

In this paper, we introduce Sparse Representation framework to 
classify the high resolution airborne images and use DSM 
derived from LiDAR data to improve the classification. It’s a 
pixel-oriented classification method and under the framework of 
Supervised Classification. The problem of ground object 
recognition is formulated as a Basis Pursuit problem and solved 
using convex programming methods  
 
in MATLAB. The key idea of this method is to represent the 
spectral vector (vector of IR-R-G value) of a pixel using 
observation matrix. The observation matrix consists of spectral 
vectors of pixels of typical ground objects (that is buildings, 
trees, vegetation and road) which are interactively selected on 
the images of test areas. A test procedure is carried out to 
examine the distinctiveness of the selected pixels and pixels 
which lead to misclassifications are replaced. In the recognition 
process, each pixel of images from test areas is classified using 
given observation matrix. Misclassifications often result from 
both steps of the classification procedure. Misclassifications of 
buildings and road in coarse classification procedure are mostly 
due to shadows and spectral similarity. Some low bushes in the 
shadow at left-bottom of Figure 2b are classified as buildings. 
All the buildings with similar color like road are misclassified 
as road (Figure 4b). In the procedure of refinement, 
misclassifications result from enforcement of only single 
elevation threshold on classification of ground objects. 
Adaptive methods that take account of local properties of 
ground objects and methods based on semantic knowledge may 
help improve the result. In our future work generality and 
effectiveness of our method will be further investigated and 
adaptive methods will be examined. 
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